
Elliptical galaxies come in a vast range of sizes, from giant to dwarf.In contrast, spiral galaxies are flattened disk systems containing not only some old stars but also large populations of young stars, much gas and dust, and molecular clouds that are the birthplace of stars . Often the regions containing bright young stars and gas clouds are arranged in long spiral arms that can be observed to wind around the galaxy.
Generally a halo of faint older stars surrounds the disk; a smaller nuclear bulge often exists, emitting two jets of energetic matter in opposite directions.Other disklike galaxies, with no overall spiral form, are classified as irregulars. These galaxies also have large amounts of gas, dust, and young stars, but no arrangement of a spiral form. They are usually located near larger galaxies, and their appearance is probably the result of a tidal encounter with the more massive galaxy.
Some extremely peculiar galaxies are located in close groups of two or three, and their tidal interactions have caused distortions of spiral arms, producing warped disks and long streamer tails. Ring galaxies, for example, form when a small galaxy collides with the center of a spiral galaxy. An intense ring of stars forms at the outer edges of the new, combined galaxy. The Hubble Space Telescope (HST) has revealed many more ring galaxies than astronomers expected, suggesting that galactic collisions may be common.Quasars are objects that appear stellar or almost stellar, but their enormous redshifts identify them as objects at very large distances (see Quasar; Radio Astronomy). They are probably closely related to radio galaxies and to BL Lacertae objects. The Hubble Space Telescope (HST) completed a survey of nearby galaxies in 1996 that revealed that all large galaxies may be homes to quasars early in the galaxy’s life. The HST survey showed that most of the galaxies contain massive black holes, which may be the next stage in galactic evolution.